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ABSTRACT

A frequent challenge when using graphical models in practice is that the sample size is limited relative to the number of parameters. They also
become hard to interpret when the number of variables p gets large. We consider applications where one has external data, in the form of networks
between variables, that can improve inference and help interpret the fitted model. An example of interest regards the interplay between social
media and the co-evolution of the COVID-19 pandemic across USA counties. We develop a spike-and-slab prior framework that depicts how
partial correlations depend on the networks, by regressing the edge probabilities, average partial correlations, and their variance on the networks.
The goal is to detect when the network data relates to the graphical model and, if so, explain how. We develop computational schemes and
software in R and probabilistic programming languages. Our applications show that incorporating network data can improve interpretation,

statistical accuracy, and out-of-sample prediction.
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1 INTRODUCTION

Gaussian graphical models (GGMs) are a convenient framework
to describe the dependence among p random variables. As prac-
tical limitations, GGMs require estimating an inherently large
number of parameters and are harder to interpret when p s large.
We propose a Bayesian framework designed for situations where
external data can help increase the accuracy and interpretability
of GGM inference. A motivating application is learning the de-
pendence structure between COVID-19 infection rates across
USA counties, and whether said dependence is linked to net-
work data measuring Facebook connections between counties.
Kuchler et al. (2022) found a link between marginal correlations
in said infection rates and the Facebook index. We propose a
probability model to describe whether and how partial correla-
tions depend on said index, and on 2 other networks measuring
geographical distance and flight passenger traffic. As a preview,
Figure 1 shows estimated (residual) partial correlations between
each county pair vs their geographical closeness and the Face-
book index. Counties that are highly connected on Facebook
have a higher proportion of positive partial correlations, whereas
for those lowly connected most non-zero partial correlations are
negative. See Section 6 for further details.

The motivation for our methodology is 2-fold. Firstly, the ease
with which one can interpret a GGM deteriorates as p grows,
that is, there are simply too many edges to read them one by one.
Our model regresses the probability of an edge being present, as

well as the mean and variance of the associated (non-zero) par-
tial correlation, on external network data. Said regression helps
understand when one can expect an edge to be present, and to
have a certain sign and magnitude. A second challenge is when
the sample size 7 is moderate relative to the p(p + 1)/2 covari-
ance parameters. By integrating external network data one hopes
to improve inferential accuracy, provided said data carries useful
information regarding the graphical model. We discuss strategies
to assess whether the network data is indeed useful.

To our knowledge, there are no model-based methods to
regress the partial correlations of an undirected graphical model
on multiple network-valued datasets. There is, however, work
on incorporating external data in regression. Stingo et al. (2010)
proposed a regression of gene expression on micro-RNA, where
the prior probabilities for non-zero coefficients depend on a cer-
tain similarity score, whereas Stingo et al. (2011) incorporated
pathway information. As another example, Quintana and Conti
(2013) proposed a Bayesian variable selection framework where
prior inclusion probabilities depend on meta-covariates.

Closer to our work, Bu and Lederer, 2021; Higgins et al., 2018;
Ng et al.,, 2012; Pineda-Pardo et al., 2014 propose graphical
LASSO (GLASSO) frameworks where penalization parameter
depends on 1 network. Peterson et al. (2015) considered mul-
tiple graphical models where prior edge inclusion probabilities
can be encouraged to resemble an external network. The main
difference with our work is that these authors considered that
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FIGURE 1 Estimated residual partial correlations in COVID-19 infections (adjusted for covariates) for all pairs of counties (y-axis) vs the
counties’ connection in 2 network datasets (x-axis). Left: Geographical closeness network defined as 1/ log(Geodistance). Right: log-Facebook
connectivity index. The gray lines show the spike-and-slab distributions fitted to the estimated partial correlations, as a function of the network

data.

one has strong grounds to believe that the single external dataset
provides useful information. Hence, there is no need to learn the
relation between the GGM and the external data. In contrast, we
regress the GGM on multiple external datasets, estimate and in-
terpret the corresponding parameters. We use a spike-and-slab
model to assess whether the external data is indeed associated
to the GGM’s structure: the edge probability, the mean and vari-
ance of non-zero partial correlations. As a secondary contribu-
tion, we extend the GLASSO framework of Ng et al. (2012) to
allow for multiple network datasets, and to assess whether the
network data are informative via information criteria. Our exam-
ples show that if the external data were non-informative (inde-
pendent of the GGM’s structure), then inference can suffer un-
less one effectively removes the external data from the model.
See Section 3.2 for a more extensive literature discussion.

The paper proceeds as follows. Section 2 reviews the standard
GLASSO and the graphical spike-and-slab. Section 3 introduces
our network-informed spike-and-slab (NI-SS) framework and
the network-informed GLASSO (NI-GLASSO). Section 4 dis-
cusses our computational strategy. Section S uses simulations to
shed light on a natural question: what if the network data are un-
informative regarding the graphical model we seek to learn? Sec-
tion 6 shows our results for the COVID-19 application, and Sec-
tion 7 concludes. Code to reproduce our results is available in
the supplementary material.

2 BACKGROUND AND NOTATION

Let y; € R be the outcome for individuals i = 1, ..., n (eg,
log-infection rates in p counties at week i) and X; € R¥ xd co-
variates (eg, temperature or percentage of fully vaccinated indi-
viduals in week i across the p counties). We assume that y; ~
N, » (X,-b, @‘1) independently across i, where b € R are regres-
sion coefficients and ® a p X p positive-definite precision (or
inverse covariance) matrix. See supplementary Section A for ex-
tensions to non-Gaussian data. To ensure that the independence
assumption across i is tenable, one may include lagged versions

of y; into X;. Keeping in mind our target COVID-19 applica-
tion where covariate effects were similar across the p counties,
this model assumes that covariates have the same effects on all
p outcomes and hence b € RY, relative to the pd parameters
needed in a general multivariate regression. Although, we view
b as a nuisance parameter, we include it in our Bayesian frame-
work to account for the uncertainty in its estimation. This comes
at a cost: evaluating the likelihood requires min{d*p*, np* +
npd} operations, relative to the O(p*) operations when one as-
sumes a zero-mean outcome (see supplemenatry Section B.7). A
faster alternative is to first estimate b and then define yi — Xil; ~
N, (0, ©~"). This alternative is not reported here, but provided
similar results in our examples.

The key novelty is that one observes Q > 1 networksbetween
variables. These are p X p symmetric matrices A, ..., A(Q),

where ai.z) measures strength of the connection between vari-

ables (j, k). In our COVID-19 example, “Eli) is the geographical
closeness between counties (j, k), aEZ) their Facebook connec-
tion index, and aEZ) their flight connectivity. We assume that the
network data are fixed, that is, we do not fit any model to said
data. Each network may contain binary (“EZ) € {0, 1}), count
(‘152) € N) orreal (“EZ) € R) entries.

Assuming y; ~ ./\/p (X,-b, @‘1), then (y,-j, yix) are indepen-
dent given the remaining elements in y; (and X;) if and only if
O jx = 0. We denote partial correlations by

P = COI'I'( | ) = ——J
ik * ijs Vik ifl,....p ik .
J y] J y{l Nk 1/@1‘]‘0‘;&

GLASSO (Yuan and Lin, 2007; Friedman et al., 2008) is a
popular approach to sparsely estimate ® by maximizing the
Gaussian log-likelihood plus a LASSO penalty. While alterna-
tives exist (eg, Fan et al,, 2009) a practical appeal of GLASSO
is that it defines a concave problem allowing for fast optimiza-
tion. A Bayesian analogue is to obtain the posterior mode under

(1)
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independent Double Exponential priors (Wang, 2012). While
such a prior encourages values of © j; that are shrunken toward 0,
it does not quantify the probability that ® x = 0 and thus con-
duct edge selection. This issue can be addressed using a spike-
and-slab framework (Gan et al., 2019). Carter et al. () proposed
parameterising the prior on ® in terms of the partial correlations,
both facilitate the prior’s interpretation and to ensure that the
posterior mode is invariant to scale transformations, that is, the
estimated pi’s remain the same if one applies a scale transforma-
tiontoY.

3 MODEL
3.1 Spike-and-slab framework

We propose a framework to regress partial correlations pj. on
multiple network datasets. We seek to describe how the propor-
tion of non-zero partial correlations, as well as their mean and
variance, depend on the networks. To address this we extend
Gan et al. (2019). The main novelty is that both the slab prior
probability and its parameters depend on network data. In par-
ticular, the slab need not be centered at 0, a feature that is novel
—to our knowledge—even in simpler regression settings and
may have some independent interest. We set a prior density

7(p1n)=Clp > 0) [ (1 = wi)DE(pj: 0. 50)
>k

+wDE (ij§ ngajk, Sjk)
—1
Wik = (1 + e’”g“fk) , sjk = so(1 + exp {’hT“fk}),
(2)

where C,, is the normalizing constant, which depends on n =
(nos 1, M) € R3(Q+1) The spike is a double-exponential with
0 mean and small scale sy meant to capture near-zero partial
correlations pji. The slab has larger variance and captures non-
zero pji. The slab prior probability w . follows a logistic regres-

(1) Q)
k

sion on the network data a . = (I, Ay a§ )T, its mean

770T aji depends linearly on aj; and its variance s is larger than
so by a factor that also depends on aj;. Our default spike prior
variance is sp = 0.003, considering that 0| < 0.01 are prac-
tically irrelevant, see supplementary Section B.2 for details and
supplementary Section C.8.3 for a sensitivity analysis to so. We
set independent uninformative /©; ~ ZG(0.01, 0.01), and
(O | n) = n(diag(®))m(p | n). For the regression coeffi-
cients, we set a minimally informative prior b ~ N;(0, 52).
Importantly, positive entries in 7y and 7; indicate that the
mean and variance (respectively) of the non-zero partial corre-
lations increase for larger network values a . and, similarly, posi-
tive 1, indicates a higher probability of a non-zero partial corre-
lation for large a ji.. Zero entries in  indicate alack of association.
There may be cases where the network covariates mainly affect
the edge inclusion probabilities, or the mean/variance of non-
zero partial correlations, but not all 3 components. One can in-
spect the posterior distribution of (19, 71, 17,) to decide what
components are needed, for example, if the 95% posterior in-
terval of 7o contains 0 then one may set it to 0 (see Section 6
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and supplementary Section C.8.2). As discussed in Section 4,
we set Gaussian priors on 7. This is for simplicity, given that our
COVID-19 example only has Q = 3 networks, and that most
earlier literature used Q = 1. In settings with larger Q, a shrink-
age or a selection prior (eg, spike-and-slab) on 7 may be more
sensible. Because of the constraint I(p > 0) the marginal prior
7 (pj | ) could be fairly different from the unconstrained den-
sity inside the product in (2), then w ;. could not be interpreted
as the prior probability of an edge, and similarly for 7§ a and
sjk- To address this, we elicit a prior 77 (17) such that the indicator
I(p > 0)is satisfied with high prior probability, see Section 4.1.

The linear predictors (1§ ajk, 11} ajx, 1 ajk) in (2) can be gen-
eralized to a semi-parametric additive model, by simply replacing
a; i by a suitable basis (eg, splines), and applying our method-
ology as presented. Supplementary Figures C.6—C.7 show that,
while not perfect, the linearity assumptions were reasonable for
the COVID-19 example, hence we focus on these for simplicity.

In (2), n = (0o, M1, n2) € R3 QT drive the regression of
the partial correlations onto the network data, a main quantity
of interest in our framework. A standard strategy to learn such
hyper-parameters is empirical Bayes, where one maximizes the
marginal posterior

f := argmax7(n | Y)
n

— argmax/e“”»@)n(b, O | n)x (n)dOdb
n

where £(Y; b, ©) is the log-likelihood of y; ~ N, (X,-b, @‘1),
and then inference on (b, ®) is based on the empirical Bayes
posterior

m (b, O, ) = 7 (b, ©

7).

One could use the joint posterior 77 (b, ®, 1|Y') for inference on
® and 7, but empirical Bayes performed better in our experi-
ments. See Giannone et al. (2021) for a related discussion on the
use of empirical Bayes with spike-and-slab regression in social
science applications.

3.2 Comparison to NI-GLASSO
As discussed, Ng et al. (2012) and Pineda-Pardo et al. (2014) al-
lowed the GLASSO regularization parameter to depend on net-
work data. In such penalized likelihood frameworks, it is cus-
tomary to subtract the estimated mean X,»l; from y;, and subse-
quently assume y; — Xb~ N, »(0, ©®~1). The authors proposed
estimating

® = argmax logdet(®) — tr($O) — Z)ij|®,-k|. (3)
Oest j#k

Each ®j; gets a different penalty A j;, which is a pre-specified
function of the network data. Both authors allow A j to de-
pend on only 1 network a ;. and hard-code that larger a ;. results
in smaller penalization A j;. In contrast, our framework learns
whether 0 should depend on aj and, if so, how. That is, we
regress the GGM on the network. We also consider multiple net-
works, as is necessary to disentangle their effects, for example,
having more Facebook connections between counties vs being
closer geographically.

Gz0z Aenuer g0 uo 1senb Aq £4$526.2/1S | 2eln/y/08/810111./So11aWoIq/Wod dno-olwapeoe//:sdny woJj papeojumoq


https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae151#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae151#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae151#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae151#supplementary-data

4 e Biometrics, 2024, Vol. 80, No. 4

We also consider a small but practically important extension of
the GLASSO methods, as a secondary contribution of our paper.
We specify

Q
hp= (A0, AQ) =exp i fo+ Y Brall b (4)
q=1

where 8 = (Bo, ..., Bq) € R are hyper-parameters. Un-
like in Ng et al. (2012) and Pineda-Pardo et al. (2014), we learn
if the network affects the graphical model via positive or negative
B’s, and consider the possibility of excluding some networks. If
anetwork dataset does not provide useful information about ©,
then one may set 8; = 0 to avoid adding unnecessary noise to
©. We call this method NI-GLASSO.

Two standard strategies to estimate 3 are cross-validation and
the Bayesian information criterion (BIC). The former is more
suitable for prediction than when seeking to explain the data-
generating truth, for example, it does not lead to consistent
model selection even in simpler linear regression (Foygel and
Drton, 2010; Zhang et al., 2010). We consider

BBIC : = argminBIC(8) = —2£(Y;0, O(B))

BeRA+H!

+[E(O(8))] - logn, (s)

where £(Y; 0, ®) is the log-likelihood for centered data (3)
and [E(®(B))| is the number of edges associated with @ ().
Supplementary Section B.6.2 contains a comparison with the ex-
tended BIC.

For a fixed 8, the NI-GLASSO in (3) is a special case of
the GOLAZO of Lauritzen and Zwiernik (2022). It is a con-
vex problem where O(B) canbe efficiently found using a block-
coordinate ascent algorithm. In cases where there are only Q =
1 or Q = 2 external networks and pis moderate (p < 200, say),
,BABIC can be found with a grid search. However, grid searches are
very costly when Q > 3 and pis large. In such settings, we pro-
pose using Bayesian optimization, in particular the R package
rBayesianoptimisation (Yan,2016).

Finally, it is interesting to compare NI-GLASSO in (3) with
our NI-SS in (2). The Bayesian interpretation of (3) is that ® j;s
arise from a Laplace random effects distribution with 0 mean and
prior variance Var [®jk | B, A] = Z/A?k. From (4),

log Var [®jk | ﬂ,A] =log(2)
2 (,30 + B+ ﬁqag,?)) . (6)

This log-linear model for the variance of the precision matrix
entries is similar to that for the slab variance in (2). However,
(2) is more flexible in that also the probability of a non-zero par-
tial correlation and their mean value (arguably, more interesting
than their variance) are regressed on the networks. For example,
Figure 1 suggests that the mean and proportion of non-zero par-
tial correlations increase as counties get more connected both
geographically and on Facebook.

4 PRIOR ELICITATION AND INFERENCE

4.1 Hyper-parameter prior elicitation

To complete our model, we specify a prior 77 (17) on the hyper-
parameters. Our guiding principle is to set a minimally informa-
tive prior, so that data may suitably update prior beliefs, while
encouraging sparse solutions and preserving the interpretability
of (2). We set 7w (1) to be proportional to C;l times indepen-
dent Gaussian priors on (1o, 771, 112 ). Adding the term C,’ "helps
simplify computations, since then C,, drops from the posterior
density 7 (®, 1 | y). Wang (2015) argued that such cancellation
of prior normalization constants does not adversely affect spike-
and-slab priors in graphical model settings (as long as the con-
stant affects hyper-parameters 7 but not parameters ©, as in our
case).

The prior on 1, which drives the prior probability of an edge,
was set such that the prior mean number of edges is proportional
to p and hence induces sparsity. The prior parameters were also
set such that the prior sample size can be thought of as 1, in anal-
ogy to the standard default Beta (0.5, 0.5) prior in a Binomial
experiment. The prior on 77; was set such that the prior mode of
the slab’s scale is 10sy and greater than 3sy with probability 0.99,
that is, the slab captures partial correlations of a larger magni-
tude than the spike. Finally, the prior on 19 was set such that the
slab has 0 prior mean and such that sampling entries of p inde-
pendently from the double-exponential priors in (2) returns a
positive-definite matrix with 0.95 prior probability. This ensures
that 7w (o | ) is similar to its unconstrained version where one
drops the positive-definiteness indicator, as otherwise w ;. can-
not be interpreted as the marginal slab probability.

Supplementary Figure B.1 plots the implied prior marginal
distribution on the p s for our applications. The prior concen-
trates at O but also features thick tails to capture true non-zero
pj’s. The corresponding posteriors (bottom panels) set signif-
icant mass away from 0, suggesting that the prior shrinkage to-
ward 0 was not excessive. Supplementary Section B.2 provides
further details.

4.2 Posterior inference

The full parameter of interest is (b, diag(®), p, 1), where n =
(10, M1, 2) are the hyper-parameters in (2). In our frame-
work, 7 is particularly interesting as it describes whether and
how the GGM depends on the network data. To approxi-
mate the posterior distribution 7 (b, diag(®), p, n | y), we
used Hamiltonian Monte Carlo. We developed an R imple-
mentation in Stan (Carpenter et al,, 2017), and a Python
implementation using the NumPyro package (Phan et al,
2019), see supplementary Sections B.l and B.3 for details.
NumPyro provides significant computational savings via faster
automatic differentiation and the use of GPUs. Supplementary S
ection E shows an order of magnitude speed ups even in simple
settings.

The output of both implementations is L posterior samples
(b, diag(®"), p®, n) forl =1, ..., L. Of particular in-
terest to us is estimating the posterior probability for the pres-
ence of an edge between any 2 nodes (j, k), that is, that the
partial correlation p ;. was generated by the slab in (2). To ease
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notation re-write the prior (2) as
m(pje | ) = (1 —wi(n))mo(pjx | 1)

+wik(m)mi(pj | 0), (7)

where 70 (pji | 17) is the spike density, 77, (i | 1) the slab den-
sity,and w jk(ﬂ) the slab probability. Let z = 1indicate that pj;
was generated from the slab and zj; = 0 that it arose from the
spike, that is, P(zjk =1|n)= ij(’?)- Consider the marginal
posterior probability

= [ x =11 pp o | Vidpgn. ()
where from Bayes rule
P(zjx=1] pj.n)
_ wit(m)mi (o | n)
(1= wi(m)mo(pje | ) +wi(m)mi (pje | n)
)

Given L posterior samples (p®, n®) from 7 (p,n | Y), (8)
may be estimated by

L

. 1

Plajp=11y) =1 > Pleg=11p5.1"). (10)
I=1

The description above applies in a full Bayesian treatment where
n has a posterior distribution. In our empirical Bayes framework,
we simply replaced 77 and ") by 7} in (7)-(10).

Our decision rule is to claim a non-zero partial correlation
Pjk 7 0when P(zjk =1]y) > 0.95. The 0.9S threshold guar-
antees that the posterior expected false discovery proportion is
below 0.05 (Miiller et al., 2004 ), and is a common default to con-
trol false positives.

4.3 Empirical Bayes

The empirical Bayes estimate 7} (Section 3.1) requires marginal-
izing the joint posterior 77 (b, ®, 1 | y). Given L posterior sam-
ples (b(l), ®(l), r)(l)) forl =1, ..., L from the latter, by defini-
tion 7)) are samples from 77 (17 | ). Then, for example, one may
obtain 7} by maximizing a kernel density estimate of 77 (1 | y).
Given that the accuracy of density estimators degrades with di-
mension, in our examples when dim(7n) > 2, we instead ob-
tained marginal mode estimators 7); = arg max, 77 (n; | y)-

S SIMULATION STUDY

We conducted simulations to illustrate two important practi-
cal points, for simplicity in the case where the outcome Y has
0 mean. First, that when the network data are informative re-
garding the structure of the GGV, incorporating said data im-
proves inference. Second and just as important, that when the
network data are useless (ie, our model is misspecified) infer-
ence does not suffer too much. To this end, we compared stan-
dard GLASSO with the NI-SS of Section 3.1 and to the NI-
GLASSO extension of Ng et al. (2012) and Pineda-Pardo et al.
(2014) of Section 3.2 in several settings. We also considered the
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sIGGM method of Higgins et al. (2018) which is analogous to
the NI-GLASSO in (3) but hyper-parameters enforce the as-
sumption that the network data are related to ®, rather than
learning from data whether this is the case or not. We considered
a setting with a single binary network A with entries a ;. € {0, 1}
and considered p = 50 and sample sizesn € {100, 200} (results
for p = 10 and n = 500 are in supplementary Figures B.2 and
B.3). We then generated SO independent datasets where y; ~
N (0, ®7"). We set the data-generating © to have unit diago-
nal and most non-zero entries along the main tri-diagonal (© j
where | j — k| = 1). Specifically, a proportion of 0.95 of the tri-
diagonal entries were set to non-zero values uniformly spaced
in [0.2,0.5]. Regarding entries outside the main tri-diagonal (ie,
O ji where |j — k| > 1), a proportion of 0.5/p were set to be
uniformly spaced in [—0.1, 0.1] (ie, the number of edges grows
linearly with p).

We consider a setting where the network data are useless (in-
dependent network), and 2 settings where they are increasingly
informative. In the former setting, our prior model (2) is fully
misspecified, since neither the proportion of non-zero © j, their
mean or variance depend on the network data.

To measure the degree to which the network dataa ;. € {0, 1}
are informative, we count the proportion of overlaps where
aj =1(®; # 0), that is, the presence/absence of an edge in
the network A matches that of an edge in ®. We considered the
following settings:

(1) Independent network: The tri-diagonal elements of A
are set such that half of them are 1 and half of them 0,
equally for the elements outside the main tri-diagonal,
half of these are 1 and half of these are 0. This led to a
0.533 and 0.502 proportion of edges that agree between
AandI(® # 0) for p = 10 and S0, respectively.

(2) Mildly informative network: The tri-diagonal elements
of A are set such that the proportion of aj =1 is
0.75, alternatively for the elements outside the main tri-
diagonal the proportion of aj. = 1is 0.2S. This led to a
0.778 and 0.747 proportion of edges that agree between
Aand I(© # 0) for p = 10 and S0, respectively.

(3) Strongly informative network: The tri-diagonal ele-
ments of A are set such that the proportion of ajp = 1is
0.85, alternatively for the elements outside the main tri-
diagonal, the proportion of aj, = 1is 0.15. Thisled to a
0.867 and 0.844 proportion of edges that agree between
AandI(® # 0) for p = 10 and 50, respectively.

Supplementary Section B.6.3 shows an additional simulation
where our prior is partially misspecified and the network is only
informative about the mean of non-zero ® ji, but not about their
proportion / variance.

For each setting, we report the mean squared estimation er-
ror (MSE), the false discovery rate (FDR), and the false nega-
tive rate (FNR) (Benjamini and Hochberg, 1995). The FDR is
the expected proportion of false positive edges among the edges
reported to be present, a measure of type I error, whereas the
FNR is the expected proportion of false negatives among those
not reported, which measures type II error. For the GLASSO

Gz0z Aenuer g0 uo 1senb Aq £4$526.2/1S | 2eln/y/08/810111./So11aWoIq/Wod dno-olwapeoe//:sdny woJj papeojumoq


https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae151#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae151#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae151#supplementary-data

6 o Biometrics, 2024, Vol. 80, No. 4

methods, an edge is declared if the estimate of p ;; was non-zero
(rounded to S decimal places).

Figure 2 presents the results. Adding network data improved
the spike-and-slab MSE and FNR when the network data were
mildly or strongly informative (Ag 75 and A gs), whereas it at-
tained similar performance to the standard spike-and-slab in the
uninformative network setting (A;,s). The FDR did not no-
ticeably improve, but it was always consistently below the usu-
ally accepted level of 0.0S. The MSE of the NI-GLASSO be-
haved similarly, improving when the networks were informa-
tive and not deteriorating drastically when the network was un-
informative. However, while the FDR improved when the net-
works were informative it was significantly above the 0.0S level.
For larger p, the NI-SS also improved the MSE compared with
the network-GLASSO methods. These findings suggest that the
spike-and-slab formulations tend to attain better inference than
the GLASSO counterparts. However, the latter may be more ap-
pealing in settings with pressing computational demands. For ex-
ample, in the p = 50, n = 100, A g5 setting GOLAZO took just
over 5 min, whereas the NumPyro NI-SS implementation took
close to 20 min (and Stan nearly 2 h), see supplementary Secti
onE.

In contrast to NI-SS and NI-GLASSO, the performance of
stGGM was poor when the network data were useless (A;,), il-
lustrating the practical value of assessing whether the network
data is useful for inference, as done in our 2 frameworks. In the
informative network data settings, the performance of sSIGGM
improved, although its MSE was higher than for our methodol-
ogy, and the FDR levels were significantly above 0.05.

6 COVID-19 INFECTION RATES

We downloaded weekly COVID-19 infection rates from CSSE
(2020) for the period January 22, 2020 to November 30, 2021
(n = 97 weeks) for all USA counties (> 3, 000). We then it-
eratively clustered neighboring counties with small populations
until all aggregated counties had atleast 500 000 inhabitants, ob-
taining 332 aggregated counties in total (see supplementary Sec
tion C.3 for full details). For simplicity onward, we refer to ag-
gregated counties simply as counties. The reason for clustering
counties was 2-fold. First, the weekly infection rates for smaller
counties are subject to high variance, and hence less reliable than
when grouping counties. Second, working with > 3000 counties
results in a GGM with >4 500 000 parameters, which imposes
serious computational bottlenecks.

We defined the outcome of interest as the county log-infection
rates, that is, log infections relative to the county’s population.
Our goal is to study the disease co-evolution after accounting for
factors driving the mean structure. To this end, we included co-
variates temperature, vaccination rates, an index measuring the
stringency of pandemic measures (CSSE, 2020), a weekly fixed
effect term estimating the mean infections across all counties in
that particular week, and a first-order auto-regressive term mea-
suring the infection rate in the previous week into the model. See
supplementary Section C and the supplementary code for the
data collection, pre-processing, and residual checks assessing the
linearity and normality assumptions, and that higher-order auto-
regressive terms are not needed.

The goal is to regress the residual partial correlations between
counties, which measure the extent to which COVID-19 co-

evolved in these counties, on 3 network datasets. These are a
(1)
jk
of the log-geographic distance between counties (j, k) (hence
larger values indicate smaller distance), a Facebook network A,

geographical closeness network A; where a’ * is the reciprocal

where agi) is the log-Facebook connection index between ( j, k),

and a flight network A; where aii) is the logarithm of 1 + the

flight passenger flow between (j, k) (see supplementary Sec
tions C.2 and C.6 for more details). Pearson’s correlation be-
tween A; and A, is 0.746, that is, the networks provide overlap-
ping information that we wish to disentangle. We standardized
the networks to all have off-diagonal entries with mean 0 and
variance 1.

As a first exercise, we used NI-GLASSO to determine what
network datasets are informative with respect to the target par-
tial correlations. Supplementary Table C.1 shows a summary
comparing the 8 models defined by the inclusion/exclusion of
each network data. The model attaining the best BIC value in-
cludes the geographical and Facebook networks, suggesting that
they both carry relevant information to help learn the graph-
ical model, but not the flight network. To further assess the
relative performance of the 8 models, we undertook a 10-fold
cross-validation exercise where we assessed the log-likelihood
(as a measure of predictive accuracy) in an out-of-sample fash-
ion. The models incorporating the Facebook and geographical
network also performed much better than standard GLASSO
according to this predictive criterion, despite being significantly
sparser (1197 vs 2637 edges).

We then applied our NI-SS framework to obtain further in-
sights into how the proportion of edge connections, as well as
the mean partial correlation, depend on the 3 networks. Supple
mentary Section C.8 summarizes our sampling procedure. Fig-
ure 1 displays the fitted spike-and-slab distribution as a function
of both the geographical closeness and Facebook networks. The
corresponding plot for the flight network is in supplementary F
igure C.S. Table 1 presents the corresponding (empirical Bayes)
hyper-parameter estimates, and Figure 3 displays the estimated
prior slab mean and prior slab probability as functions of the
networks. Recall that positive entries in 779 and 7, indicate that
the mean and variance (respectively) of the non-zero p jk, that is,
the slab location and variance parameters, increase for counties
that are strongly connected in the network. Similarly, positive en-
tries in 7, indicate a higher probability of there being a non-zero
partial correlation between such counties. Table 1 hence shows
that counties strongly connected in the Facebook had more non-
zero partial correlations (relative to less connected counties),
and that counties strongly connected in the Facebook and ge-
ographic networks had larger non-zero partial correlations. The
flight passenger network was estimated to have no effect on there
being a non-zero partial correlation, nor on their mean, as both of
their credibility intervals contain 0, and a mild effect on the vari-
ance of non-zero partial correlation (in agreement with the BIC
and cross-validation results in supplementary Table C.1). The
coefficients for the Facebook network are larger in absolute value
than those of the geographical network indicating that the Face-
book network has a stronger association with the dependence on
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TABLE 1 NI-SS empirical Bayes (marginal MAP) estimates and 95% posterior intervals for COVID-19 data.

Intercept Ay A, Az
1o (slab location) —0.002 0.007 0.024 0.006
95% interval (—0.006, 0.003) (0.002,0.011) (0.021, 0.028) (—0.001, 0.009)
11 (slab dispersion) 2.874 0.025 0.043 —0.162
95% interval (2.661,3.092) (—0.033,0.084) (—0.026,0.113) (—0.247, —0.082)
1, (slab probability) -3.797 0.111 1.066 0.069
95% interval (—4.291, —3.423) (—0.033,0.258) (0.899, 1.286) (—0.069,0.221)

Ay, Ay, and A3: networks defined by 1/ log(Geodist ), log(Facebook), and log(1 + Flights). Bold values where the credibility interval does not includes 0.
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FIGURE 3 COVID-19 data: Slab location (left) and slab probability (right) as a function of the 3 networks estimated by empirical Bayes.

COVID-19 rates. This is further illustrated in Figure 3. Table 1
suggests that some hyper-parameters could be set to 0, for exam-
ple, there isn’t strong evidence that the slab location depends on
the flights network (A3 ). Supplementary Section C.8.2 provides
additional results for the case where the empirical Bayes estimate
for any parameter whose 95% credibility intervals contains O is
set to 0. Overall, Figure 3 and Table 1 help interpret the GGM,
in terms of when one expects an edge to be present and/or have
a particular sign.

To further investigate the effects of including network data,
supplementary Table C.3 compares the number of edges se-
lected by the NI-SS to those of an SS prior using no network data.
The former returns a denser graphical model, and both declare
considerably fewer edges than the penalized likelihood methods.
These findings agree with those of Section 5, where the more
conservative nature of the spike-and-slab resulted in a good FDR
control. Hence, supplementary Table C.3 suggests that NI-SS
increases the power to detect edges that would be missed if the
network data were not included. Such extra edges (Figure 4) oc-
cur both between geographically close and more distant coun-
ties, for example, governed by the same party.

COVID-19 diffuses locally, and it is, therefore, not surpris-
ing that the geographical distance network was informative. The
greater importance assigned to the Facebook network by our
model is, however, intriguing. Individuals who are connected in
social networks tend to have similar backgrounds and political
leanings, and to be exposed to similar information. Such a shared
background may lead to similar attitudes toward health preven-
tion, and hence similar infection risks, explaining this depen-

dence. For example, Allcott et al. (2020) found that political be-
liefs were strongly tied to behavior during the COVID pandemic,
more specifically that Republicans practised less social distanc-
ing. Our study reveals a similar association between social media
and health outcomes.

7 DISCUSSION

We hope that our framework to regress a graphical model on
network data has interest beyond our motivating COVID-19
and stock market applications (supplementary Section D). The
spike-and-slab provides a rich depiction for the probability that
parameters are non-zero as well as the distribution of non-zero
parameters. Such a framework should find applicability in many
other problems, for example, high-dimensional regression or fac-
tor models. Our results showed that the external (network) data
was particularly helpful in situations where the problem dimen-
sion was large relative to the sample size , as is often the case
in applications. Further, we observed that the ability to learn
hyper-parameters ameliorated the consequences in a worst-
case scenario where one introduces uninformative external
data.

Future work could consider richer models for how the GGM
depends on the networks, for example, non-parametric, or situ-
ations where the graphical model and associated network data
vary across time. Another interesting avenue would be devel-
oping computational methods that scale to even higher dimen-
sions. A possible strategy is to replace our continuous spike by
a point-mass at 0. In sparse settings, such a prior could lead
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FIGURE 4 Edges identified by NI-SS.

to Markov chain Monte Carlo iterations where one updates
models of dimension much lower than the p(p + 1)/2 required
by a continuous spike, albeit one would have to design efficient
algorithms to search over the 2/("+1/2 models.
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