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MACHINE LEARNING FOR ECONOMICS AND POLICY
Stephen HANSEN

Abstract

This chapter focuses on applications of machine learning algorithms for 
economic research and policymaking. It first introduces basic concepts in machine 
learning, whose main branches include supervised and unsupervised learning.  
The second half of the chapter discusses use cases and applications of machine 
learning algorithms.  First, it discusses the quantification of unstructured data and 
how to recover information in a way that is useful for economists. The second 
application concerns new possibilities for measurement, where the combination 
of machine learning and new digital data, provides the opportunity to develop 
measures of objects like inflation and economic activity.  The last two applications 
are related to forecasting and causal inference. The overall message of the chapter 
is that machine learning provides the tools needed to fully exploit the possibilities 
of rich new digital data sources.

Key words: Machine learning, digital data.

JEL classification: C55.



370

 Part IV: New Technologies

I. INTRODUCTION

Recent times have seen an astonishing growth in the production of data. 
More data was created in 2014 and 2015 than in the entire history of humankind 
beforehand, and by 2020 there will be approximately 44 zettabytes, or 44 trillion 
gigabytes, of data (Marr, 2015). Much of this explosion is due to digitization, as 
new technologies allow previously ephemeral human activities to be recorded. 
Messages and photos are now routinely sent via email or social media, which in 
turn allows them to be stored on servers indefinitely. Digital data of more direct 
economic relevance is also now increasingly available. Information from, for 
example, individual consumers’ purchases, detailed product price histories, and 
rich administrative records is already beginning to transform empirical research 
in economics.

Along with the growth of data has come new empirical methods for 
analyzing it. The field of machine learning has developed rapidly in the past 
ten years in response to the digitization of data, and contributes many ideas 
to artificial intelligence, which is currently receiving much public attention. The 
relevance of these advancements for empirical research in economics is less 
clear. The bulk of machine learning methods have been developed by computer 
scientists, statisticians, and engineers, who typically have different goals than 
economists in conducting empirical work. This raises the question of what 
potential uses there are of machine learning in economics given its emphasis on 
causal inference and counterfactual prediction.

The first goal of this chapter is to introduce basics concepts in machine 
learning, and its first part focusses on this. The second goal is to reflect on its 
potential impact on economic research and public policy, and it does so through 
the discussion of several application areas. The discussion is non-technical and 
focused on broad ideas.1

There are several takeaway points. First, one important but sometimes 
underappreciated use of machine learning is the ability to use entirely new 
types of data. Modern econometrics typically uses data that is “regular”: it 
can be represented in rectangular form with rows corresponding to individual 
observations and columns to variables. Moreover, variables are typically 
recorded as single, quantitative measurements like the total expenditure of 
households or the wages of employees. However, many of the newly available 
digital data sources do not have this format: text, satellite images, and web 
search profiles contain vast amounts of economically relevant information but 

1 Readers interested in a more technical, academic discussion can refer to several recent excellent surveys 
in the economics literature (for example, Einav and Levin, 2014; Varian, 2014; Mullainathan and Spiess, 
2017).



371

Machine Learning for Economics and Policy

have non-standard data structures. Machine learning can be used to extract 
the important information from these sources, and clean them for econometric 
analysis. The chapter illustrates several cases in which off-the-shelf approaches 
have been used to effectively do this.

Second, it is important to recognize that many machine learning methods 
are often not appropriate for the kinds of problems that economists confront. 
The chapter provides examples of this in forecasting and causal inference.

Third, despite the differing goals of machine learning and economics, 
specific ideas from machine learning can nevertheless be incorporated and 
extended to meet the needs of economic research. This process is only just 
beginning in economics, but is likely to hold the key for allowing economists 
and policymakers to fully exploit the potential of digital data. 

II. WHAT IS MACHINE LEARNING?

There appears to be no single, agreed-upon definition of machine learning. 
A generic definition is the study of algorithms that allow machines to improve 
their performance in some given task as new data arrives. A more expansive 
definition from a popular textbook is that machine learning is “a set of methods 
that can automatically detect patterns in data, and then use the uncovered 
patterns to predict future data, or to perform other kinds of decision making 
under uncertainty” (Murphy, 2012). However, these definitions do not fully 
convey the differences between machine learning and econometrics. After 
all, the ordinary least squares regression model familiar to any undergraduate 
student in economics detects patterns in data, and has higher-quality estimates 
when estimated on larger datasets. 

One area of difference between machine learning and econometrics 
is the role of statistical inference. Econometricians tend to focus on formal 
inference procedures. This involves estimating parameters of a given statistical 
model, and then deriving theoretical properties of the distributions of these 
estimates to do hypothesis testing. In contrast, machine learning is often less 
concerned about the “true” model that generates the data, and instead seeks 
out procedures that simply work well under some metric, such as predictive 
accuracy. This distinction is not black and white. For example, some (particularly 
Bayesian) machine learning algorithms begin from an assumed probability 
model for the data much like in econometrics, and these can in principle be 
used for inference. Even in these cases, though, the machine learning literature 
is typically less concerned with theoretical inference guarantees than is the 
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econometrics literature. Breiman (2001) provides a good introduction to these 
“two cultures” of statistical modelling.

Another area of difference is computation. Econometric procedures are 
rarely assessed in terms of their computational complexity, whereas such 
considerations are at the heart of much of machine learning. Certain core 
algorithms are popular precisely because they are fast to compute and can scale 
well. This is largely due to the massive datasets that are used in many machine 
learning applications. Economists can afford to work with computationally 
inefficient algorithms given the much smaller datasets they typically analyze, 
but this will evolve as datasets grow.

There are also some semantic differences that sometimes obscure what 
are in fact similar ideas. Both fields write models that relate some variable of 
interest, denoted y, to some other variables potentially related to y, denoted x. 
Econometricians usually call y a “dependent variable”, or “outcome” and the 
x variables “covariates”, “explanatory variables”, or “independent variables”. 
In machine learning y is often called a “label”, “response”, or “target”, while x 
are “features”, or “predictors”. Moreover, the process of building a model to 
relate x and y in econometrics is called “estimation” and in machine learning 
“learning”. This chapter will adopt the standard language of econometrics.

Rather than debate the exact definition of machine learning, it is helpful to 
consider instead the specific tasks that machine learning is designed to solve. 
A typical division is between supervised learning and unsupervised learning, 
which we now turn to discuss.

1. Supervised Learning

Supervised learning is the task of building a model to explain an outcome 
variable given covariates. This is exactly what many econometric models do, but 
the metric to judge the quality of a model in machine learning is quite distinct. 
Essentially, the only goal is predictive accuracy. Achieving high predictive 
accuracy with a fixed dataset is trivial. A linear regression model in which one 
uses as many covariates as there are observations to explain an outcome will 
perfectly explain the data. Procedures like these, however, tend to over-fit the 
data and make predictions based on spurious relationships. Machine learning 
therefore targets out-of-sample predictive accuracy. The goal is to build a model 
that accurately predicts outcomes in new data that was not used in the building 
of the model in the first place. Models that are good at this task are deemed 
successful.
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To take a concrete example, consider the case of spam email. The outcome 
variable is binary: either an email is spam or it is not. The covariates are the 
words in emails. Given some fixed set of emails, predicting spam is potentially 
as trivial as finding a single word that is only present in spam emails and never 
in non-spam emails. Suppose this word is “xxx”. Then, the presence of “xxx” is 
a perfect predictor of spam in this specific set of emails. But this model may 
not generalize well to new emails, for example spam emails requesting bank 
account details to receive the sender’s inheritance. Instead, we want a model 
that is likely to accurately classify new emails as spam or not.

The machine learning literature has made enormous strides in building 
models with good predictive accuracy. Algorithms for face recognition in photos, 
speech recognition, and the aforementioned spam detection problem are now 
widely used across society, and are all applications of supervised learning. 

Even if one wishes to use predictive accuracy as the benchmark to judge 
the success of a model, there are concerns with whether the way supervised 
learning algorithms are evaluated is sufficient. How can one evaluate the 
performance of an algorithm on out-of-sample data if such data is not available? 
The standard solution is to divide the data into two portions: a training sample 
and a test sample. The training sample is used to estimate a model. Then, for 
each observation in the test data, one can generate a predicted value for the 
outcome given the model estimated with the training sample, and then compare 
the prediction against the actual value in the test data. The test sample stands 
in for out-of-sample data since it is not used in training. However, there is often 
no guarantee that the actual out-of-sample data that an algorithm will confront 
in the real world corresponds to the data it confronts in the test set. Figure 1 
below provides an illustration. Consider the situation on the left. Suppose the 
observed data are the three points on the curve, and we are trying to predict 
an outcome measured on the vertical axis given some covariate measured on 
the horizontal axis. The curve represents the real-world relationship between the 
covariate and the outcome. A supervised learning algorithm constructed only 
with the three observed points might go badly wrong even if it achieves high 
out-of-sample predictive accuracy on a test set. This is because all the data 
comes from a restricted part of the curve that behaves like a downward-sloping 
line, and a supervised algorithm will tend to estimate just this pattern. This 
pattern clearly does not generalize well to all possible covariate values since 
part of the real-world relationship involves an upward slope. Similarly, in the 
situation on the right the observed data again will give a misleading view on the true 
relationship. The problem is now that the observed data are too dispersed.2 

2 Many thanks to Bryan Pardo of Northwestern University who first made these points to the author.
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These examples are simple and involve a single-dimensional covariate. 
In real applications of machine learning, one has hundreds, thousands, or 
even millions of different inputs, and determining whether the data on which 
supervised algorithms are evaluated gives a representative view of the world 
is extremely challenging. Economists and policymakers should bear this in 
mind. While mistakes in speech or image recognition can be annoying and 
embarrassing, they have low social costs. Mistakes in policymaking can be 
catastrophic.

Supervised learning algorithms are also generally constructed in 
environments that are quite different than those that economists face. First, 
they are data rich. Companies like Facebook and Google can draw on vast 
troves of data to train recommendation algorithms. In contrast, economists 
many times have very limited data to work with. For example, while predicting 
recessions is an important policy problem, recessions are relatively infrequent in 
historical time series. Second, the environments are stable in the sense that the 
future looks much like the past. Economies are often non-stationary, and often 
when predictive accuracy is most important, such as at the onset of a financial 
crises or the introduction of a disruptive technology. This brings into question 
whether off-the-shelf machine learning methods are appropriate for the kinds 
of prediction problems that economists are most interested in. The chapter 
returns to this issue in the discussion of applications below. 

To better understand the differences between machine learning and 
traditional econometrics, it is instructive to consider a popular supervised 
algorithm called the LASSO (Least Absolute Shrinkage and Selection Operator), 
which was introduced by Tibshirani (1996) and has become increasingly popular 
in economics (see, for example, Belloni, Chernozhukov and Hansen, 2014). The 

FIGURE 1

DANGERS OF UNREPRESENTATIVE DATA FOR SUPERVISED LEARNING EVALUATION
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LASSO is a basic extension of the ordinary least squares (OLS) regression model 
that is the workhorse for applied economics. Both models relate an outcome y 
to covariates x by choosing coefficients for the x values that best explain y. For 
example, y might be income, and x might be composed of three variables: years 
of schooling, IQ, and eye color. We expect the first two covariates to relate to 
income, but the not third. The key difference between OLS and LASSO is that 
LASSO adds a penalty term that punishes large coefficient values. The idea 
behind this penalty is to assign a zero coefficient to unimportant variables and 
a non-zero coefficient to important variables. The hope is that the variables 
with non-zero coefficients have a true relationship with the outcome, and those 
with zero coefficients are noise variables that do not. In the previous example, 
this would mean that LASSO would give a positive coefficient to schooling and 
IQ, and a zero coefficient to eye color. Such an approach can be particularly 
fruitful when there are many variables relative to the number of observations. 
In fact, LASSO can even be estimated when there are many more variables than 
observations.

While the penalty term in LASSO can eliminate noise variables, this comes 
at a cost. The penalty term punishes large coefficient values for all covariates. 
This means that even the coefficients on the true variables are lower than they 
would be in the simple OLS model. In the technical language of econometrics, 
the coefficient values estimated from LASSO have a bias: the estimated effect 
of any covariate has on average a lower magnitude than whatever the true 
effect is. To continue with the example above, suppose that an extra year of 
schooling leads to an extra income of 600 EUR per year. The LASSO might 
estimate that the extra effect of a year of schooling is only 300 EUR per year. 
Why, then, would one want to use a model that intentionally introduced bias 
into its estimation procedure? The answer is that introducing bias reduces 
noise. The OLS model will estimate some coefficient value for eye color even 
though this has no relationship to income. On average this will be close to zero, 
but depending on the randomness in any specific dataset there may be some 
spurious correlation between eye color and income that OLS will pick up. This in 
turn introduces noise in predicted income. By contrast, LASSO will simply tend 
to drop eye color out of the model completely.

Figure 2 illustrates these properties. Suppose there is a person who has 
been to school for 5 years and has an IQ of 100. Moreover, suppose that an 
additional year of school increases income by 0.6 units, and an additional 
point of IQ increases income by 0.03 units. Thus, this individual’s true income 
is 5 * 0.6 + 100 * 0.03 = 6. Figure 2 plots the distributions of the values for 
predicted income produced by OLS and LASSO when there are also many noise 
variables in the model with no relationship to income. Here we see clearly what 
is known in the machine learning literature as the bias-variance tradeoff. OLS on 
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average generates the correct prediction since the distribution is centered at 6. 
But around this average we see large dispersion: there are predicted values as 
low as 0 and as high as 12. By contrast, LASSO is biased, since the distribution 
is centered around 5 rather than 6. But the predicted values are tightly centered 
around 5, without the extremes of OLS. Put another way, LASSO is wrong on 
average, but never too wrong; OLS is right on average, but often very wrong. 
One can show in this example that the average squared error–a popular metric 
for goodness-of-fit–is lower under LASSO than OLS.

What are implications of this example? Much of textbook econometrics 
restricts attention to models that are on average correct (unbiased), and then 
searches within such models for those with low variance. Machine learning 
shows us that this approach may be limited, especially when there are many 
variables and when the main goal is prediction, in which case biased models can 
perform well. At the same time, as discussed above, economists are interested 
in models with good inference properties: when deciding the amount to invest in 
public schools, it is crucial to know the true effect of an additional year of school 
on income (0.6 in the example above). Since supervised learning algorithms are 
designed for predictive accuracy, a natural question to ask is whether the two 
goals are in tension. In other words, can supervised learning algorithms be used 
for parameter inference even though they were not designed with this goal in 
mind? In many important cases the answer is “no”, or perhaps more accurately, 
“not without modification”. As we have seen for the LASSO, the coefficient 
estimates have a downward bias. Moreover, there is no guarantee that LASSO 

FIGURE 2

THE TRADEOFF BETWEEN BIAS AND VARIANCE
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omits all noise variables. There is some theoretical work on statistical inference 
with the LASSO (interested readers can consult Bühlmann and van de Geer, 
2011 or Hastie, Tibshirani and Wainwright, 2015), but in practice there are few 
reliable guarantees that are consistent across applications. 

The main message here is that supervised learning has recently made 
enormous strides in accurate out-of-sample prediction in stable, data-rich 
environments. It often does so by introducing bias to reduce variance, which is 
crucial in models with vast numbers of variables. However, whether and when 
these models can be used for the inference problems many economists care 
about is still an open question undergoing active research. We will discuss 
recent contributions in the applications section below.

2. Unsupervised Learning

While unsupervised learning has received somewhat less attention in the 
literature, it is important in its own right. The goal of unsupervised learning is to 
uncover hidden structure in data. There is no notion of a dependent variable in 
unsupervised learning that one tries to explain with covariates. Each observation 
in a dataset simply has multiple recorded variables with potentially complex 
interdependencies that unsupervised learning tries to reveal. There may be 
several motivations for unsupervised learning. One may wish to describe the most 
prominent sources of variation within a vast array of covariates. Alternatively, 
unsupervised learning can provide a low-dimensional representation of a high-
dimensional object that preserves most of the relevant information. Unsupervised 
learning can also group observations together based on similarity. None of 
these motivations should be wholly unfamiliar to economists. Clustering and 
factor analysis, for example, are examples of unsupervised learning tasks that 
are already rather common in empirical economics. 

Unsupervised learning can be an end in itself if data exploration is the 
primary goal, or else be seen as a data preparation tool used to extract features 
to serve as inputs into supervised learning algorithms or econometric models. 
In applied economics research, this makes it arguably less controversial than 
supervised learning. For better or worse, even in economics issues of formal 
inference are often downplayed when the primary aim is data processing and 
preparation. In this sense, off-the-shelf methods for unsupervised learning can 
be applied more readily if they provide a richer description of data than existing 
methods. The rest of the discussion argues this is indeed the case.

Probably the most well-known unsupervised learning algorithm in 
economics is principal components analysis (PCA). The idea is to find common 
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components across variables that explain how they move together. Observations 
are then represented as combinations of these common components rather than 
in terms of the original variables. Researchers typically use far fewer components 
to represent observations than there are variables, so there is dimensionality 
reduction. For example, such an approach is often used in macroeconomic time 
series to explain the co-movement of hundreds of different economic indices. 
The common components can be thought of as unobserved cyclical variables 
that drive the observed data.

PCA is also well-known in the machine learning literature, but machine 
learning has also developed additional algorithms that correct for some of PCA’s 
limitations. Although economists are not generally aware of these, incorporating 
them into the econometric toolkit can be done at fairly low cost. One limitation 
of PCA is that the components it identifies can be difficult to interpret, and, in 
many instances, appear more like abstract objects that explain co-movement 
rather than objects with actual meaning. There has been work on alternative 
ways of constructing components in the machine learning literature that eases 
this problem in certain applications. An interesting example is from Lee and 
Seung (1999), who compare PCA with an alternative called non-negative matrix 

FIGURE 3

PRINCIPAL COMPONENTS ANALYSIS VS. NON-NEGATIVE MATRIX FACTORIZATION

Source: Lee and Seung (1999).
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factorization (NMF). NMF is similar to PCA, except it constrains the components 
to be made of only non-negative numbers. This seemingly technical distinction 
is in fact is substantive, because the components that NMF produces appear 
more like the elemental parts that each observation in the data is built from.

Figure 3 illustrates this idea for image data. The underlying dataset is a 
collection of photographs of human faces. The seven by seven, larger matrices 
on the left of the figure illustrate the 49 components that PCA and NMF 
uncover from the photos. Black shading indicates positive numbers, and red 
shading indicates negative numbers. The fascinating aspect of the example is 
that the NMF components appear to be elements of a face: there are eyes, 
mouths, noses, etc. A single photo in the data is then built by combining 
these elements into an individual face (the smaller matrices in the middle of 
the figures show the picture-specific weightings applied to the components 
to arrive at the observation on the right). The components of PCA are very 
different: the first component is essentially an average face, and the rest of the 
components add and subtract pixel intensity from this average face. A specific 
face is then represented as a weighted deviation from the average face, which 
is a less intuitive construction than NMF gives. 

This example may seem like a curiosity, but it illustrates a deeper point that 
economists could potentially gain insight on latent structure from leveraging 
common algorithms in machine learning that have to date been almost entirely 
ignored. For example, one could apply NMF and related algorithms to individual 
product sales across consumers to learn archetypal shopping patterns and 
identify substitutes and complements, or to individual product prices to learn 
the underlying components in overall inflation.

Another limitation of PCA is that its foundations are most appropriate for 
data that varies continuously. One important example of data for which this is 
not the case is text. The most basic way of representing textual databases, also 
called corpora, is to count the occurrence of all unique terms in the vocabulary 
across all documents. The resulting data clearly has interdependencies, for 
example the word ‘labor’ will tend to co-occur with the word ‘wage’. But the 
data is fundamentally discrete, as a word cannot appear 1.5 times. Also, the vast 
majority of unique words in corpora do not occur in any specific document, and 
so the data is also populated by a large percentage of zeros. Such data calls for 
algorithms that model its specific features.

One of the most powerful and popular unsupervised learning models for 
text is Latent Dirichlet Allocation (LDA), introduced by Blei, Ng and Jordan, 
(2003). LDA is an example of a probabilistic topic model, which both identifies 
topics in corpora and then represents documents as combinations of those 
topics. More specifically, a topic is a probability distribution over all the unique 
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words in the corpus. This probabilistic aspect of LDA is important. Suppose 
one imagines a topic about inflation and another about unemployment. Now 
consider the word ‘rate.’ Prima facie it is unclear into which topic ‘rate’ should 
go, since a topic about inflation or unemployment might feature ‘inflation rate’ 
or labor ‘participation rate’, respectively. Allowing probabilistic assignment of 
words to topics conveys this semantic flexibility. LDA is also a mixed-membership 
model because documents are not assigned a single topic. Instead, each 
document is allocated shares of all topics. So, a document can be 25% about 
unemployment, 10% about inflation, etc. 

Figure 4 shows example output of LDA estimated on a corpus of verbatim 
transcripts of the discussions of the Federal Open Market Committee, which 
decides on monetary policy in the United States. The sample period for estimation 
is 1987-2009. The two word clouds represent two different estimated topics. 
The size of the word in the cloud is approximately equal to its probability in the 
topic.3 Although the algorithm is not fed any information on the underlying 
content of the data, the topics are clearly interpretable: there is one about 
economic growth, and another about recession and recovery. The time series 
above the topics shows variation in the share of time that individual FOMC 
members spend discussing the respective topics (the blue dash is the maximum 
share in a given meeting, the solid black line is the median share, and the dashed 
red line is the minimum share). Periods of recession are shaded in gray. The series 
also shows very natural properties. Attention to growth systematically increases 
when the economy expands, then collapses at the beginning of recession 
periods. In contrast, attention towards recession spikes during contractions. 
Again, it is worth emphasizing that such patterns have been wholly captured by 
a machine learning algorithm, with no input from the researcher.

Another important point is that text is innately very high-dimensional. Even 
moderately-sized corpora contain thousands of unique terms. Overfitting such 
data is a serious problem, but the statistical structure of LDA guards against 
this. It is what is known as a Bayesian model, which means it places some 
initial likelihood on all possible combinations of words in topics. The observed 
data then changes these likelihoods but does not fully determine them. The 
transcript dataset above has roughly 10,000 unique terms, and yet LDA handles 
the dimensionality with ease. 

These two examples show the power of unsupervised learning to reveal 
interesting patterns in data. Moreover, they also show how machine learning 
can convert what at first sight are unstructured, messy data–i.e., image files 
and raw text data–into a tractable, quantitative forms that are suitable for 

3 Some of the terms are not English words because the data has been stemmed prior to estimation, a 
process whereby words are brought into their linguistic roots.
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traditional statistical analysis. This opens the possibility of not just having new 
techniques to use with existing data, but having access to new data itself. This 
point is discussed further in the applications section below. 

One possible criticism of unsupervised learning algorithms, however, is 
that they have too little structure. Figure 4 shows that there are likely to be 
time-varying probabilities of topic coverage depending on the business cycle, 
but this is not built into LDA. One possible contribution of economists to the 
development of unsupervised learning algorithms is to introduce dependencies 
of interest into them to more directly link their outputs to quantities of interest. 
Such efforts will likely require collaboration across disciplines.

III. APPLICATIONS

Having set the foundations of basic concepts in machine learning, the rest 
of the chapter expands on potential applications in economics and policy. We 

FIGURE 4

EXAMPLE OUTPUT OF LATENT DIRICHLET ALLOCATION

Source: Hansen, McMahon and Prat (2018).
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begin with one of the most pragmatic applications: to quantify novel data in 
tractable forms. Next, we consider the role of machine learning in converting 
digital data into specific economic measures, followed by a discussion of machine 
learning in forecasting models. Finally, we reflect on possible applications in 
causal inference.

1. Quantification of Unstructured Data

Many firms and regulators are awash with unstructured data, and specifically 
text data. One leading example is the legal industry, in which much of the work 
of junior lawyers is taken up by trawling through documents to find relevant 
content from contracts, title deeds, prior judicial decisions, etc. Regulators too 
face a similar task when they initiate cases. For example, dawn raids on potential 
violators of competition law typically yield troves of documents, and sifting 
out the relevant material from the mass of irrelevant material is an important 
challenge. Automating the task of finding relevant information therefore has 
the potential to generate large efficiency gains in these contexts, and indeed 
this process is already well underway in the legal industry (Croft, 2017).

One of the most common ways of determining document relevance in 
economics is keyword searches. In this approach, a word or list of words is 
defined in advance, and then documents are flagged as containing these terms 
or not, or alternatively ordered according to the frequency with which terms 
appear. While simple and relatively easy to implement, keyword searches have 
limitations. Most basically, they require the definition in advance of the important 
words, which may require subjective judgments. For example, to measure 
economic activity, we might construct a word list which includes ‘growth’. But 
clearly other words are also used to discuss activity, and choosing these involves 
numerous subjective judgments. More subtly, ‘growth’ is also used in other 
contexts, such as in describing wage growth as a factor in inflationary pressures, 
and accounting for context with keyword searches is practically very difficult. In 
other cases, the academic or policymaker may simply have no idea how words 
relate to the content of interest. In litigation involving traders’ manipulation of 
market prices like the recent LIBOR rate-fixing scandal, much of the evidence 
comes from chat rooms in which traders make heavy use of jargon, slang, and 
code that make simple keyword searches difficult to implement. 

Unsupervised machine learning helps overcome some of these problems. 
Especially in environments with uncertainty about what content documents 
contain, and how words are used in different kinds of contexts, machine 
learning provides a powerful, data-driven approach for corpus exploration and 
information retrieval. The quantification of unstructured data might be an end 
in itself by, for example, allowing a regulator to quickly sift through documents 



383

Machine Learning for Economics and Policy

and sort them into categories. Or it might be the first stage in extracting features 
from text data that then serve as inputs into further empirical studies.

To illustrate these points more concretely, consider the example data point 
in the FOMC transcript corpus discussed in the previous section represented in 
Figure 5. This is an utterance of Janet Yellen in March 2006 when she was 
President of the Federal Reserve Bank of San Francisco. This statement uses 
highly technical language, and determining its content manually would require 
a reader to have a high level of education in economics. 

As an alternative to manual processing, one can use Latent Dirichlet 
Allocation (LDA), an unsupervised learning algorithm described above, to 

FIGURE 5

EXAMPLE DATA POINT IN FOMC TRANSCRIPTS

Source: Janet Yellen, March (2006).

determine its content. The estimated LDA model associates this statement most 
with the topic on the left in Figure 6 below. This topic in turn places highest 
probability on ‘inflation’ (and other words that begin with the stem ‘inflat’). 
The fascinating aspect of this illustration is that the example data point contains 
no occurrence of the word `inflation’, and a keyword search for it would not 
flag this statement as relevant. Instead, Janet Yellen uses many words related 
to inflation (CPI is the consumer price index, PCE is personal consumption 
expenditure), and LDA learns from other documents in the corpus that the 
words Yellen uses are most often used in situation in which the word `inflation’ 
is also used. This allows it to associate her statement with the inflation topic.

Another point of interest is that LDA is able to place individual words 
within documents into their appropriate context. Consider the word ‘measures’ 
that Yellen uses in the example statement. While this word appears prominently 
in the inflation topic, it is also present with high probability in another topic 
about numerical indicators displayed on the right in Figure 6. LDA can resolve 
this ambiguity by looking at the other words that Yellen speaks. While the 
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classification of ‘measures’ without any context is unclear, the fact that Yellen 
uses many words unambiguously associated with the inflation topic causes it to 
assign ‘measures’ to the inflation topic as well.

These features of LDA help explain its widespread popularity. One application 
familiar to many readers might be the indexing system in JSTOR, the popular 
repository for academic papers. LDA is used to alert readers to new articles of 
potential interest in the repository given the estimated content in previously 
viewed articles. The adoption of such systems for firms and regulators that also 
handle large textual corpora would potentially create large gains in automated 
information retrieval.

FIGURE 6

TOPIC MOST ASSOCIATED WITH EXAMPLE (LEFT) AND ALTERNATIVE TOPIC (RIGHT)

While the focus of the discussion so far has centered around text, similar 
points can be made for other kinds of unstructured data too. Policy institutes and 
marketing firms regularly collect survey data to measure attitudes, behaviors, 
and characteristics. This data is often analyzed in ad hoc ways, for example 
by computing some average response across a range of questions to obtain 
a single number. Again, unsupervised learning provides a way of modeling 
the full dependency structure in the data and extracting novel insights into the 
underlying ways in which respondents differ from each other. One example in 
the economics literature is Bandiera et al. (2017), who analyze detailed time-
use surveys of over 1,000 CEOs across a range of countries. Using LDA, they 
find a novel behavioral distinction between CEO ‘leaders’ who spend time 
coordinating high-level functions in companies and `managers’ who spend 
time on more operational matters. Similar approaches have been used to 
measure health status (Erosheva et al., 2007) and political ideology (Gross and 
Manrique-Vallier, 2014) from surveys. 
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Another intriguing potential application of unsupervised learning is to 
network data, where the challenge is to identify groups of related nodes based 
on linkage patterns. There is a large literature on this so-called community 
detection problem outside economics, but hardly any economic applications. 
One exception is Nimczik (2017), who estimates the geographic extent of labor 
markets using data on worker flows in Austria using unsupervised learning.

2. New Data and New Measurement

The first application discussed above was simply to use machine learning 
to make sense of messy, difficult-to-interpret data while imposing minimal 
structure on the process of information retrieval. However, there is growing 
interest in not just describing such data, but also in using it to construct new 
measures of relevant economic variables. There are various ways in which 
traditional economic indicators are limited. They are often available at relatively 
infrequent intervals, as is the case with quarterly GDP measures. Furthermore, 
they are often constructed for aggregated geographical units like nation states 
with very little spatial granularity. Finally, in many regions of the world official 
economic statistics are either unavailable entirely, or else manipulated by 
governments to the extent that they contain very little information. For these 
reasons, there is demand for new sources of information. Recently there has 
been growing interest in digital data as a means of filling these gaps. Examples 
include:

FIGURE 7

ARGENTINIAN INFLATION AS MEASURED BY ONLINE PRICES  
AND OFFICIAL CPI MEASURE

Source: Cavallo and Rigobon (2016).
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 In Argentina, the government actively manipulated official price statistics 
beginning in 2007. The Billion Prices Project at the Massachusetts 
Institute of Technology began as a means of providing an alternative, 
more accurate inflation index using prices posted by online retailers in 
Argentina and has since expanded to many other countries. While the 
universe of retailers for which one can obtain online prices is smaller than 
that surveyed by official government agencies, these prices are updated 
daily, have a low cost of extraction, and are free from government 
interference. Figure 7 below shows inflation measures using online 
prices and official statistics, and demonstrates the ability of digital data 
to capture the actual underlying dynamics in an economy when official 
data is unavailable or unreliable.

 Baker, Bloom, and Davis (2016) construct a popular and influential 
Economic Policy Uncertainty (EPU) Index (http://www.policyuncertainty.
com/). While the impact of uncertainty on economic activity is 
acknowledged as important, historically there have been very few 
adequate measures of uncertainty. Financial-market based measures like 
VIX are based on option prices derived from US equity markets, which 
do not capture the full uncertainty that economic agents face. The EPU 
index instead measures uncertainty specifically about policymaking. It 
is constructed in large part based on the fraction of articles in a wide 
selection of newspapers that contain terms like ‘uncertain’, ‘economic’, 
‘congress’, and ‘regulation’. 

 Glaeser, Kim, and Luca (2017) construct a local activity index using the 
number of restaurants and businesses reviewed on the website Yelp. This 
index has predictive power for the much more aggregated and lagged 
data from the US Census Bureau on county business patterns, especially 
in more densely populated areas.

 SpaceKnow is a commercial company that produces numerous indices of 
economic activity using satellite image data. One such index is the China 
Satellite Manufacturing Index, which is based on 2.2 billion individual 
snapshots of more than 6,000 industrial sites in China (Wigglesworth 
2018).

While activity indices are some of the most natural objects of interest 
that new data can provide, there are also less obvious but equally powerful 
possibilities. A good example comes from the work of Hoberg and Phillips 
(2010 and 2016) and has direct relevance to competition policy. The issue 
is how to measure the industry classification of firms. The often-used SIC or 
NAICS classification systems have several limitations. Firms typically do not 



387

Machine Learning for Economics and Policy

receive different classifications over time even when their markets evolve. 
The classification systems also do not track the development of entirely new 
products particularly well. More generally, they provide a very coarse distinction 
of the ways in which firms differ from each other.

Hoberg and Phillips propose the use of text data to construct industry 
classifications that overcome some of these challenges. The idea is to use 
companies’ product descriptions contained in their annual 10-K filings to the 
US Securities and Exchange Commission. For each pair of firms that make a 
filing in each year, one can compute a measure of linguistic similarity between 
descriptions and use it as a proxy for proximity in product space. Moreover, 
from these similarity measures, one can group firms into clusters to define 
industry categories. The resulting categorization provides a dynamic, continuous 
measure of firms’ location in product space relative to all other firms in the data. 
Hoberg and Phillips show that their text-based categorization provides several 
new insights into why firms merge and how new products develop. 

At this stage, it is useful to make the distinction between `big data’ coming 
from digital sources on the one hand and machine learning on the other. 
While raw digital data no doubt contains information relevant for economic 
variables of interest, the exact mapping between the two is difficult to know. 
One possibility is to apply unsupervised learning algorithms to describe the data  
along the lines discussed in the first application, and then use the extracted 
features to build an index of interest. The problem is that these features will 
not have been chosen to have maximum predictive power for the economic 
variable, which implies a loss of information and thus usefulness.

Instead, the task of building new indices from vast data is in many ways a 
classic supervised learning problem, since the primary goal is to make the best 
possible prediction of the object of interest. Jean et al. (2016) is an example 
of research that combines vast digital data (satellite images) and state-of-
the-art supervised machine learning algorithms to provide a new economic 
measurement (spatially granular poverty levels in several African countries). As 
the use of machine learning in economics becomes more widespread, many 
of the indices built from digital data will likely also be the output of targeted 
supervised algorithms.

3. Forecasting

As discussed above, supervised machine learning is at its heart the study of 
methods for achieving good out-of-sample prediction using high-dimensional 
or unstructured data. One area of high interest for policymakers is forecasting, 
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or predicting the future based on past data. In fact, the idea that rich economic 
time-series data can be used to obtain better forecasts of the future predates 
the growth of interest in machine learning. Stock and Watson (1999) and 
Bernanke, Boivin and Eliasz (2005) are seminal contribution in the literature 
that show that augmenting standard macroeconomic forecasting models with 
many time series can improve future forecasts. These papers use methods like 
penalized regression and dimensionality reduction that are part of the standard 
machine learning toolkit.

Before economists apply more modern supervised learning algorithms 
for forecasting, it is worth emphasizing again that the problem of economic 
forecasting differs in fundamental ways from the environments in which 
many machine learning algorithms are built and evaluated. First, a common 
assumption in machine learning is that the out-of-sample data has the same 
distribution as the training data. In a time-series context, this boils down to an 
assumption that the future looks like the past. While this may sometimes be 
true, in other cases it might not be if there are fundamental structural changes. 
For example, if there is shift in the productive capacity of the economy, then the 
historical relationship between unemployment and wage growth will change. 
While there is a well-established literature in econometrics on the detection 
of structural breaks, the machine learning literature in this area is much less 
developed. Second, in economics the data is often big on some dimensions but 
small on others. While there are hundreds of available time series for forecasting, 
many are observed only at a quarterly or even less frequent basis. Third, the 
so-called `signal-to-noise’ ratio in economic and financial data can be quite 
low, which means that fundamental relationships among variables can be hard 
to detect because there is a lot of randomness that affects all variables in the 
model. The overall challenge, then, is to find ways of employing supervised 
learning methods in situations for which they were not originally designed.

One possibility is the use of so-called generative models. These models 
construct a full statistical model for input and output data, in contrast to some 
recent tendencies in machine learning like deep learning that take a more 
agnostic stance on the model that generates the data. The main reason for 
the success of deep learning models is their remarkable predictive power in the 
presence of vast data. In smaller samples like the ones economists face, though, 
generative models have been proven to have better predictive power (Ng and 
Jordan, 2002). Davig and Smalter Hall (2017) make use of this insight, and show 
that a generative model better predicts US recessions than standard regressions 
models and the Survey of Professional Forecasters. Another advantage of 
generative models is that they are closer to the kinds of structural models that 
economists are already used to constructing and estimating.
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Another approach to forecasting with large data is to first use unsupervised 
learning to extract features, and then use those features as inputs into an 
otherwise standard economic forecasting model. One example is Thorsrud 
(2016), who applies latent Dirichlet allocation to Norwegian media articles, and 
uses the extracted topics to predict evolution in the business cycle. Figure 8 
below plots the derived index against actual Norwegian GDP. Clearly the two 
series co-move substantially, which illustrates the value of features extracted 
from unsupervised learning for forecasting.

FIGURE 8

FINANCIAL NEWS INDEX (BLACK) AND NORWEGIAN GDP GROWTH (BLUE)

Source: From https: //www.retriever-info.com/fni

Another example from outside macroeconomics is the prediction of conflict, 
which is important both for risk management of private sector companies and 
governments. Mueller and Rauh (2017) show that media data can help forecast 
the outbreak of political violence. They also use LDA to extract topics from 
text, and then show that variation in topic usage in newspapers’ coverage of 
countries predicts conflict in those countries.

A general comment that applies to the approach of using extracted 
features as inputs into forecasting models is that they implicitly treat them 
as fixed data rather than estimated objects. While this has led to important 
advances in research, in the future one would expect the development of 
algorithms that jointly model high-dimensional data and whatever variable 
is being predicted. This is likely to lead to even better predictions, and also 
more rigorous statistical inference. Again, generative models can provide the 
backbone for such approaches. 
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4. Causal Inference

The applications discussed so far all represent important steps in empirical 
work in economics, but the profession is currently dominated by interest in causal 
inference, and more precisely in determining the effect of policy interventions. 
The usefulness of predictive models for this goal is not immediately obvious. 
Athey (2017) presents a nice illustration of this point. Suppose a hotel chain 
is interested in determining the effect on sales of rooms following an increase 
in the price of rooms. If one simply takes observed price and sales data, there 
is a positive relationship because as occupancy rates increase hotels raise the 
price of remaining rooms: during peak holiday periods rooms are scarce and 
prices are high, while during low season the reverse is true. Therefore, a purely 
predictive model would indicate higher sales following an unexpected increase 
in price. Of course, common sense dictates that exactly the reverse would occur,  
i.e., a hotel would sell fewer rooms if it unexpectedly raised prices. The problem 
here is that a pure predictive model based on observed data fails to account 
for the unobserved underlying demand for hotel rooms. High occupancy rates 
are associated with high prices because high demand drives both. Methods for 
solving problems such as these have been the subject of a great deal of modern 
econometrics.

What, then, can machine learning offer for economists interested in 
estimating causal relationships? One important realization is that even causal 
inference procedures involve what are essentially pure prediction steps. One 
classic approach for causal inference is the use of so-called ‘instrumental’ 
variables. These are variables that are correlated with a treatment but not with 
the outcome of interest.4 Replacing the treatment with the instruments allows 
one to isolate the causal impact of the treatment on the outcome. Instrumental 
variable estimation typically proceeds in two steps: first, one predicts the value 
of the treatment given the instruments; second, one uses the predicted value of 
the treatment as an independent variable in a regression on the outcome. The 
first step in this procedure can be viewed as a natural machine learning task as it 
involves making an optimal prediction of the treatment given the instruments. 
Machine learning methods for instrumental variables are particularly relevant 
when there are many potential instruments, or when one wants to estimate a 
flexible relationship between instruments and treatments. Several recent papers 
combine supervised machine learning methods with instrumental variables 
(Belloni et al., 2012; Hartford et al., 2017).

Another application of machine learning to causal inference is the 
problem of high-dimensional controls. Many potential observable variables can 

4 In the following discussion, a treatment will mean a variable that a researcher or policymaker intervenes 
to change, and an outcome will mean whatever target variable he or she is attempting to influence.
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also affect the outcome of interest beyond just the treatment of interest. For 
example, the impact of worker training on productivity might depend on worker 
characteristics, firm characteristics, and the characteristics of the technology 
that the worker operates. Which control variables beyond the treatment to 
include in regression models is often unclear, especially in the absence of a 
relevant theory. A common approach is to run many different models, each of 
which includes different controls, and to examine how sensitive the relationship 
between a treatment and outcome is to the inclusion of a particular set of 
controls. One naïve machine learning approach would be to include all controls 
along with the treatment in a penalized regression model in order for the data 
to reveal which controls are relevant. In fact, this approach yields unreliable 
estimates of the treatment effect, but adjustments of off-the-shelf algorithms 
can help correct the problem (Belloni, Chernozhukov and Hansen, 2014).

Another approach to causal inference in economics is so-called structural 
modelling in which one takes a theoretical economic model, and then uses 
data to estimate the parameters of the theory. As models grow in complexity, 
the number of parameters can grow rapidly. For example, a consumer demand 
model could in theory involve cross-price elasticities between every possible 
pair of goods in a supermarket. Machine learning can also offer techniques 
for parameter estimation in large-scale structural models fit on large-scale 
data. Generative models with a Bayesian formulation again provide a natural 
framework for structural estimation in economics. While these have arguably 
lost favor in recent years in the machine learning community due to the rise of 
deep learning, their future in economics is promising. A recent example is Athey 
et al. (2018), but it is safe to say that this application of machine learning is 
probably the least developed of all those discussed.

As with the forecasting application, the broad point again arises that the 
context in which machine learning algorithms are often built is not necessarily 
directly applicable to empirical applications. This is not to say that machine 
learning has no relevance to causal inference, but in this area especially careful 
thinking is required to assess where machine learning techniques can add value. 

IV. CONCLUSION

This chapter has reviewed basic concepts in machine learning and provided 
numerous examples of how machine learning might be useful to academic 
economists and policymakers. Some applications simply require off-the-shelf 
methods, while others require the development of new techniques to address 
the challenges specific to economics. While some of these techniques are 
already under development, there is much still to be done.



392

 Part IV: New Technologies

While this chapter has focused on the value policymaking authorities can 
derive from applying machine learning techniques to data, there are also new 
regulatory issues that are byproducts of the increased use of machine learning. 
One example is firms’ use of pricing algorithms. When firms tailor prices to 
individual customers’ traits and behavior, price discrimination almost necessarily 
increases. Whether this reduces consumer surplus is less clear. On the one hand, 
increasing prices while keeping quantity constant reduces surplus, but on the 
other pricing algorithms may allow firms to increase the quantity or variety 
of goods produced. A second issue is whether the use of pricing algorithms 
can increase tacit collusion by providing new opportunities for firms to link 
their prices to the prices their competitors post. This issue is the subject of 
recent academic (Salcedo, 2015) and policy (OECD, 2017) interest. While there 
is a growing awareness of these issues, determining the appropriate responses 
from competition authorities is still an open question, although there is a 
broad understanding that “the rise of pricing algorithms and AI software will 
require changes in our enforcement practices” (McSweeny, 2017). Of course, 
addressing these questions requires at least a basic understanding of the nature 
of machine learning algorithms, which is another important motivation for this 
chapter. 

Another important regulatory issue is transparency. Firms are increasingly 
using machine learning to automate decisions that affect consumers in important 
ways, but in some cases this can increase opacity relative to human decision 
making. One example is the decision to grant credit. Financial institutions 
deploy machine learning algorithms to decide which kinds of consumer receive 
which types of loans, but consumers do not necessarily understand the key 
characteristics for predicting repayment risk. Regulators in this and other 
situations have a role to play in ensuring transparency and fairness.

Finally, much of the digital data valuable for machine learning applications 
is held by private sector companies whose main interest in exploiting it is 
commercial. To the extent that such data also has public value for research and 
policymaking, regulators will also be called upon to facilitate the transfer of 
data from the firms that directly collect it to a wider range of interested parties.
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