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SUMMARY

We consider the recent novel two-step estimator of laryczower and Shum (American Economic Review 2012; 102:
202-237), who analyze voting decisions of US Supreme Court justices. Motivated by the underlying theoretical
voting model, we suggest that where the data under consideration display variation in the common prior, estimates
of the structural parameters based on their methodology should generally benefit from including interaction terms
between individual and time covariates in the first stage whenever there is individual heterogeneity in expertise.
We show numerically, via simulation and re-estimation of the US Supreme Court data, that the first-order interac-
tion effects that appear in the theoretical model can have an important empirical implication. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

How individuals and groups make decisions under uncertainty is important in many areas of eco-
nomics and political economy, and numerous theoretical models emphasize that decision makers can
differ both in terms of their knowledge of an underlying state of the world and their preferences.! A
key challenge for taking these models to data is to estimate the decision-making parameters and under-
stand, quantitatively, the role played by different factors in decision making. Iaryczower and Shum
(2012) (hereafter IS) have proposed an empirical voting model and a novel procedure for estimating
the voting behavior of US Supreme Court justices. IS consider a framework in which each justice has
to vote for the Plaintiff or Defendant, based on the observed evidence and his private interpretation of
the law and other specifics of the case. Specifically, each justice is allowed to differ in his ideology, or
bias (7;;), as well as in his ability to interpret the law and the specifics of the case (6;;). This decision

* Correspondence to: Sorawoot Srisuma, School of Economics, University of Surrey, Guildford GU2 7XH, UK. E-mail:
s.srisuma@surrey.ac.uk

! For example, see the literature on various aspects of committee decision making (Gerling et al., 2005), career concerns
(Sorensen and Ottaviani, 2000; Prat, 2005; Levy, 2007) and political economy (Maskin and Tirole, 2004; Besley, 2006).
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problem is based on the theoretical voting model of Duggan and Martinelli (2001), and can be applied
to other voting games (e.g. laryczower et al., 2013; Hansen et al., 2014).

IS estimate (7;;, 6;;) in two steps. In each period, a binary, unobserved state is realized; in one, the
law favors the plaintiff and in another it favors the defendant. The first step is to estimate the probability
that justices vote for the plaintiff in both states, controlling for justice and case covariates. The second
is to recover the parameters of interest by solving the structural equations imposed by the equilibrium
condition of the voting game. This note proposes a simple way that can help improve their estimates.
Whenever justices differ in their ability 6;; to perceive the state, which is typical of most interesting
voting problems, the theoretical model predicts that justices will display heterogeneous responses
across cases in terms of how much information they require to vote for the plaintiff. To capture this
behavior empirically, we propose including interaction terms in the first-stage estimation. Monte Carlo
simulation exercises illustrate that the interaction terms can play an important role empirically, and a
re-estimation of the Supreme Court data supports the simulation results.

2. ESTIMATION OF THE STRUCTURAL MODEL

This section presents the empirical model IS propose, and motivates why it may be empirically use-
ful to explicitly allow justices with heterogeneous ability to react differently to changes in common
prior beliefs that the decision should favor the plaintiff. For brevity and notational simplicity we only
consider the sincere voting version of the model.

2.1. Model

For each case ¢ there is a common unobserved state w; € {0, 1}, unknown to every decision marker
and the econometrician, that equals 1 if the law in case ¢ favors the plaintiff and O if it favors the
defendant. w; is drawn from a Bernoulli prior distribution with Pr[w; = 1] = p;. Each justice i has
to make a binary decision v;; € {0, 1}—where 1 (0) is a vote for the plaintiff (defendant)—based
on a private signal s;; = w; + 0j:&, with &, ~ N(0, 1). An appropriate measure of expertise in this
setting is 6;; = oi?l, which measures justice i’s ability to infer the state. Justices’ payoffs are state
dependent and parametrized by m;; € (0, 1). All justices get a payoff of 0 if their vote matches the
state. Justice i gets payoff —sm;; when v;; = 1 and w; = 0, and — (1 — 7;;) when v;; = 0 and w; = 1.
;s is essentially a bias parameter that captures a justice’s inclination to favor the plaintiff: when it is
close to 0 (1), the justice has a strong leaning to the plaintiff (defendant), while an unbiased justice has
iy = 0.5.
Given this set-up, it can be shown that justice i chooses v;; = 1 if and only if

Priw; =1]si] - 1 — 7y

(D

Prlw, =0|si;] = iy
Bayes’ rule allows one to express

ln(Pr[wt=1|Sit])=ln( Pt )+2Sit;1 )
Pr[wt=0|s,-t] 1—[)[ 20

it

The normal distribution satisfies the monotone likelihood ratio property, which Duggan and Mar-
tinelli (2001) show implies the optimal voting rule is characterized by a threshold crossing condition.
Specifically, by combining equation (1) and (2), it follows that v;; = 1 if and only if

1 _ T *
Sit > 3~ 0> |:ln (1_—17;”) +ln(1 P )] = 5" (O3, Tir, pr) 3)

— Pt
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Letting s, denote s* (6;;, 0ir, pr), the equilibrium probability of voting high in state w; is yis,», =
1 — @ [6; (s} — w;)], where @ is the normal cumulative distribution function.

Expressed in this way, the voting rule (3) makes clear that justices with different expertise have
heterogeneous responses to changes in p;. The voting rule of a justice with very high expertise will be
almost unaffected by a change in p;. Since the signal is very accurate, he disregards the prior whatever
its value in deciding the vote. On the other hand, the voting behavior of a justice with low expertise
will be much more affected by changes in p;. Thus it is potentially important to allow, as a first-order
effect, for such heterogeneity in estimating voting probabilities.

The likelihood of observing the vector of votes v; = (Vis,..., V) is

n n
; 1—v;, it 1-vi;
Prlv,] = p; l_[ [V,'Ut',rl (1 - Vit,l) ’ ] + (1 —pr) 1_[ [J’ivt,o (1 - Vit,o) Y ] “)
i=1 i=1
Given yi;,0 and yis,1, 0;; and si*t can be recovered via
! (1 - Vit,o)
o1 (1 - )’it,o) + ¢! (Vit,l)

0ir = @' (1 —yir0) — @' (1 — yir,1) and sf, = (5)

The bias parameter r;; relates to all other variables in the model according to equation (3). Therefore
one can recover (6;;, iz ) if p, Yir,0, and yj;,1 are known.

2.2. Methodology

For some observable characteristics of the cases X; and the justices Z;;, IS consider the following
reduced-form parametric terms that mimic the theoretical parameters above:

exp(Xt’,B)
X B)= ——m—— 6
pr (Xt5 B) 1 + exp (X/B) (6)
exp (X/¢ + Z[,n)
it0 (Xt, Zis; Cn) = @)
Vzto( ts Lit ;77) 1+eXP(Xz/§+Zl{t’7)
Yit,o +exp (X/a + Z.8
Viea (Xe, Zig o, 8.8.1m) = = (X; %) (FS:1S)

1 + exp (X[« + Z],6)

Dt Vit.0, and P 1 can be estimated in the first stage from the maximum likelihood estimators of «, S,
y, 8, £, and n that maximize the natural logarithm of

n —_)
Pt (Xt’ﬁ) ]_[ [Vit,l (Xt’ Zit;a» 8’§5 n)v” (1 - )’it,l (Xt» Zit;a» 5»;.’ Tl))l v”]
i=1
n o (3)
t + (1= pr (X1:B)) ]_[ [Vit,O (X:. Zis: Com)" (1 —Yiro (X¢, Zir; G, 77))1 ”]

i=1

Then in the second stage /G\i, and 7;; can be obtained from solving the structural relationships in
equations (4) and (5).
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In order to allow for first order heterogeneous effects for changes in s, with respect to p;, we
propose an additional vector of a simple interaction terms W;; between elements of X; and Z;; be
included in the reduced-form parametric terms in the first stage. More concretely, replace y;;0 and
Yit,1 With

exp (X, + Zj,n + Wi, A)

9
1+ exp (X/¢ + Z[,n+ W/,A)

71‘1,0 (Xt Zit, Wirs &, A) =

viro + exp (Xjo + Z1,8 + W/§)

Yita Xe. Zig, Wi, 8,8, 4, 6) =
ylt,l( t it it §77 S) 1+eXp(Xt/a+Zl/t8+VVl/t%-)

(FS:ALT)

Following the theoretical model, we expect W;; to play a particularly important role in empirical
problems where there is a large degree of heterogeneity in justices’ expertise.

3. EVALUATING THE IMPORTANCE OF THE INTERACTION TERMS

In order to develop an intuition for how the IS methodology may generally benefit from the inclusion
of interaction terms we first present some results from a small Monte Carlo study. We then replicate
and re-estimate the structural parameters for the US Supreme Court voting data used in IS.

3.1. Monte Carlo

In order to test the extent to which the inclusion of interaction terms matters for the estimation of
voting games, we perform the following actions:

1. Generate a group of nine decision makers (the size of the Court), each making 150 independent
decisions over time.

(a) Five members are type A with preferences w4 and expertise 0 4; four members are type B
with preferences w5 and expertise o p.

(b) We use various parameter values that are ‘reasonable’ in the sense of being in line with
estimates in IS. We examine w4 = % and g = %, andogy = 1 —xandog = 1+ x
for x € {0,0.05,0.1,...,0.5}. Thus our baseline comparisons are for 11 unique sets of
parameters.”

2. For each unique set of 7 and ¢ values, we run 1000 simulations. For each simulation, we generate
theoretical decision data according to the following procedure:?

(a) In each period ¢, p; is drawn from U[0.2, 0.8] (independent across periods).

(b) wy is drawn from a Bernoulli distribution with Pr[w; = 1] = p;.

(c) vz is drawn from a Bernoulli distribution with Prvi; = 1 | wt] = Vit.e,, as defined in
Section 2.

2 As a robustness exercise we also reverse the values of the bias (i.e. w4 = % and mp = %) as well as consider ty = T =
%. Our findings do not change much. Numerical results are available upon request. We focus on estimation of ¢ rather than 6
since the parametrization of the normal distribution in terms of its standard deviation is more common in many settings.

3 Maximum likelihood estimation is done in R with the BFGS algorithm; code is available on request.
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3. Given these data, we construct X; = (1, p;) and Z;; = (1, D 4), where D 4 is a dummy variable that
indicates membership of group A (and thus not actually time-varying). We use these data to estimate
two separate specifications of the first-stage regressions given by equation FS:IS and (FS:ALT).

4. After we obtain estimates of first-stage coefficients, we use the structural equation (3) and (5) to
recover 7w;; and 6, for j € {A, B} as described above. We present as time-invariant point estimates
the median values of these values across all periods.

Figure 1, which shows the percentage bias for each value of the expertise difference, summarizes
the main results of the simulation exercise.* When expertise differences are small, the results indicate
that the interaction terms do not matter much; the estimates of the parameter levels and differences
are estimated reasonably accurately in specifications (FS:IS) and (FS:ALT), and neither appears to
outperform the other. However, as 04 — op increases, specification (FS:ALT) performs much better,
especially in estimating the differences between groups, while at the same time improving in accuracy.
For example, when 0 4 —op = 0.6, specification (FS:ALT) estimates % — l;ﬂ andog—op to3%
accuracy, whereas specification (FS:IS) displays biases of 47% and 87% respectively. Here we report
the results in terms of the ratio I_T” since it is the key quantity for determining whether a justice votes
for the plaintiff.’

We also plot the complete distribution of the simulation results when op — 04 = 0 and when
op — 04 = 0.8 in Figure 2. With no o differences, the results from both specifications are again very
similar. But even at relatively modest expertise differences, the results show that not only does the
inclusion of interaction terms ensure that the results stay anchored around the true parameters, but also
that the distribution around the estimates is less dispersed too.

These figures plot the complete distribution of the simulation results for the structural parameters
of interest when 04 = 1 and op = 1 (top row) and when 04 = 0.6 and op = 1.4 (bottom row).

3.2. US Supreme Court Data

We take data from IS that contains the vote of every justice (31 in total) on every case from 1953 to
2008. IS run separate regressions on four subsets of cases according to the issue at stake (business,
basic rights, criminal, federalism). We focus on the results for economics and basic rights cases: the
two subsets IS treat as their baseline cases.

The first specification we run is (FS:IS), taking X; and Z;; to be the same sets of variables as in
IS. This replicates their results.® The second is (FS:ALT), including in the set of interaction terms Wj;
what appears to us to be the relevant subset of individual and meeting characteristics for influencing
justices’ prior beliefs.”

Since the effect of interaction terms only matters when there is meaningful variation in the prior
pr, it is important to quantify its range in the data. Figure 3 plots histograms of the estimated priors
from specification (FS:IS) (the results with (FS:ALT) are very similar), and shows that they range
from around 0.3 to around 0.9, with a fairly dispersed distribution. This variation in the prior suggests,
along with heterogeneity in justices’ expertise, that interaction terms may play an important role in
describing voting behavior of judges in this dataset.

4 This section focuses on the key results of the simulations; full results are available on request.

5 The representation of this quantity as 1_?” is a very common, but ultimately arbitrary, modeling choice. One could, for exam-
ple, model the quantity as 1:‘(‘;7; ) for any positive monotonic function g, and clearly change the magnitude of the estimated 7z
while leaving invariant the ratio.

¢ We perform this re-estimation since IS do not report the median value of the structural parameters across all values of the
fitted priors.

7 We do not interact the mean value of other justices’ Segal-Cover ideology or quality scores—covariates within X;,—with
any Z; variables, nor chief justice dummies—covariates within Z;—with any X, variables. They remain included within X;,
and Z;, respectively.
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Notes: These figures plot the estimated values as a percentage of the true value
(percentage bias) holding fixed 74 = % and g = % against different values of the

difference o — 4.

Figure 1. Percentage biases of estimates: (a) bias in 1;3" estimates; (b) bias in 0 4 estimates; (c) bias in l;ﬂ
estimates; (d) bias in o estimates; (e) bias in l;’; B I;—AA estimates; (f) bias in 0 — 0 4 estimates. These

figures plot the estimated values as a percentage of the true value (percentage bias) holding fixed m4 = % and
g = % against different values of the difference op — 04
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No Heterogeneity in Expertise
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Notes: These figures plot the complete distribution of the simulation results for the structural parameters of interest when o4 =1 and op = 1

(top row) and when o4 = 0.6 and o3 = 1.4 (bottom row).

Figure 2. Densities of estimates without (top row) and with (bottom row) heterogeneity in expertise: (a) density
of % estimates; (b) density of 04 estimates; (c) density of % estimates; (d) density of op estimates; (e)

density of 1;’; 4 estimates; (f) density of 04 estimates; (g) density of 1;’; B estimates; (h) density of o g estimates
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Notes: This figure plots, for business cases (left figure) and rights cases (right figure),

histograms of the estimated priors p; from specification (FS:IS).

Figure 3. Histograms of estimated priors. This figure plots, for business cases (left) and rights cases (right),
histograms of the estimated priors p,; from specification (FS:IS)
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Table I. Re-estimation exercise

Business cases Rights cases

I_T” estimates o estimates 1_7” estimates o estimates

FS:1IS FS:ALT FS:S FS:ALT FS:S FS:ALT FS:IS FS:ALT

Variance  0.123 0.068 0.011 0.006 0.451 0.056 0.037 0.006

IQR 0.5249  0.3207 0.1532  0.1051 1.0802 0.3188 0.1925  0.0924
Min. 0.294 0.333 0.396 0.392 0.275 0.290 0.360 0.415
Median 0.881 0.719 0.543 0.516 1.792 0.851 0.492 0.515
Max. 1.567 1.431 0.759 0.699 2.509 1.240 1.255 0.726

Note: This table shows various measures of dispersion of the distribution across judges of the estimated
values of 1_7” and o when we specify equation FS:IS and (FS:ALT).

Our two specifications each produce 31 estimates (corresponding to the number of justices) of I_T”
and o for business and rights cases. Table I displays a number of summary statistics related to the
distributions of these estimates. The simulation exercise above shows that not explicitly controlling for
heterogeneous effects that exist across judges and cases tends to inflate estimated differences between
decision makers. This is consistent with our estimates using the US Supreme Court data. As the table
shows, the inclusion of the interaction terms reduces justice heterogeneity both in terms of variances
and ranges. For rights cases this reduction is particularly notable: the variance from the specification
with interaction terms is around one-sixth the value of the variance without.

Finally, the radar charts in Figure 4 are helpful for comparing the distributions from the two speci-
fications more directly. Justices are ordered lowest to highest moving clockwise based on the (FS:IS)
estimates. Within this disc we plot both sets of estimates. The (FS:ALT) estimates, particularly for
rights cases, display notably less heterogeneity.

4. CONCLUSION

Given the high level of interest within economics in how individuals and groups of individuals make
decisions under uncertainty, the recent two-step methodology proposed by IS provides a useful way to
analyze such problems empirically. They estimate a voting model of US Supreme Court justices that
accounts for voters’ private information (e.g. level of expertise) and their ideological differences, and
this methodology can also be applied in other voting contexts.

In order to capture the main theoretical property of the model that voters with heterogeneous ability
react differently to changes in the common prior belief, we propose the inclusion of interaction terms
between case and justice characteristics in the first-stage reduced-form estimation. This should help
improve the estimates of the structural parameters, especially where voters differ in their expertise. We
perform some Monte Carlo studies and re-estimate the US Supreme Court data used in IS to support
our estimation approach.

Finally, we end with some remarks to emphasize that we are not simply advocating making the
reduced-form estimation in the first stage as flexible as possible, either by artificially including more
regressors (of higher-order terms) or, in the extreme, taking a completely non-parametric approach.
While a more flexible specification in the first stage is appealing theoretically from the point of robust-
ness, it may lead to more biased and imprecise estimates in the second stage, especially in finite
samples. In contrast, our motivation for the inclusion of interaction terms is led by an inherent implica-
tion of voting models when voters are heterogeneous. Our numerical results show that imposing such
theory-driven structure can significantly improve the structural estimates. Hence a broader message is
that economic theory can be used to help inform the specification of the reduced-form component of
two-step estimators in structural models.
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- -Fs:ls ~<FS:IS

—FS:ALT
~—FS:ALT

--FS:IS
~—FS:ALT

(c) o: Rights (d) o: Business

Notes: These figures show, for 2= (row 1) and o (row 2), the estimate of each Jus-
tice’s parameter specification (FS:IS) along with the equivalent parameter estimated
under the specification (FS:ALT). In each case, the Justices are ordered lowest to
highest moving clockwise based their FS:IS estimates. Column 1 refers to Rights

Cases and column 2 to Business Cases.

Figure 4. Radar plots of Supreme Court data re-estimation exercise: (a 17?”: rights; (b) PTJT: business; (c) o:
rights; (d) o: business. These figures show, for 1_?” (row 1) and o (row 2), the estimate of each justice’s parameter
specification (FS:IS) along with the equivalent parameter estimated under the specification (FS:ALT). In each
case, the justices are ordered lowest to highest moving clockwise based on their (FS:IS) estimates. Column 1
refers to rights cases and column 2 to business cases
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